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Unimolecular dissociation of neutral and charged argon clusters is theoretically investigated in the context of
calorimetric measurements. The temperature of the product cluster is estimated from the distribution of the
translational kinetic energy released (KER), assumed to have the formf(ε) ≈ εR exp(-ε/kBT). Phase space
theory (PST) in its orbiting transition state (OTS) version is validated by comparing its predictions to the
results of large-scale molecular dynamics simulations. The temperatures estimated from the KER distributions
are seen to be generally lower than the actual microcanonical temperature computed from independent Monte
Carlo simulations of the product cluster at thermal equilibrium. On the basis of these deviations, the various
approximations leading from the rigorous PST/OTS treament to the assumed exponential form are critically
discussed. In the case of Arn

+ clusters, the use of a quantum diatomic-in-molecules Hamiltonian constructed
from recent ab initio calculations reveals some possible inadequacies of the 1/r4 ion/dipole interaction at
intermediate distances due to some residual charge transfer.

I. Introduction

The properties of free atomic clusters have long been obtained
from spectroscopy performed in molecular beams. While a size
selection is necessary to get insight at the atomic resolution,
the difficulty in estimating the temperature has often hindered
precise measurements. Temperature is an important parameter
that has been shown to influence optical1 and chemical2

properties, and also structure itself3 through variations in the
mass abundance spectra. Since the seminal work by Gspann,4

special attention to cluster temperature has been paid by several
groups, through dedicated calorimetric experiments5-10 aiming
at probing phase transitions.

Direct vibrational or rotational spectroscopies are essentially
restricted to small systems.11 One other route for measuring
cluster temperatures comes from the analysis of the fragmenta-
tion patterns. The Haberland group5 and more recently the
Jarrold group9 have used the distribution of products in photo-
or collision-induced fragmentations as a way of determining
temperatures. At lower excitations, the distribution of kinetic
energy released after dissociation carries a lot of information
about the energetics and kinetics of the reactions.12 In general,
the binding energies or temperatures are deduced in experi-
ments13-19 through a comparison with some established statisti-
cal rate theories20 such as those pioneered by Weisskopf21 or
by Rice, Ramsperger, and Kassel (RRK).22 Significant progress

was made by Klots23-26 who developed the quasi-equilibrium
theory (QET) of unimolecular decomposition and later intro-
duced the concept of the “evaporative ensemble”. Klots also
emphasized the role of angular momentum constraints in the
calculation of the kinetic energy released and the rate constant.
This work, as well as contributions by Troe27 and especially
Chesnavich and Bowers,28 among others, contributed to the
development of the so-called phase space theory (PST) initiated
by Nikitin29 and Light and co-workers.30 Both the QET and
PST approaches have since achieved large success by providing
a theoretical framework for experimental interpretations (for
early reports, see, e.g., refs 31 and 32). Beyond unimolecular
decomposition, thermionic emission33 can also be interpreted
using statistical theories.34 Recent experiments in the Bordas
group have reported temperature measurements in the electronic
emission from small tungsten35 and carbon36 clusters.

However, the predictive capacities of these powerful theories
are limited by the presence of several factors that are undeter-
mined, or hard to guess. For instance, it was noted by Matt and
co-workers37 that the binding energy of C60

+ associated to the
loss of C2 could differ by more than 10 eV because of the poor
knowledge of the transition state energy.

An alternative way to assess statistical rate theories is to
perform trajectory calculations using molecular dynamics
simulations. In cluster science, this approach has been put
forward by Weerasinghe and Amar38 who compared the
predictions of the RRK and PST theories for the unimolecular
evaporation of rare-gas systems. Peslherbe and Hase extended
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these conclusions to the case of aluminum clusters.39-42 In
particular, they considered zero-point corrections as well as
nonzero total angular momenta. The general conclusion of these
works is that phase space theory is quantitative in reproducing
statistical and kinetic properties of dissociating clusters, provided
that angular momentum constraints and anharmonicities of the
vibrational density of states are correctly accounted for.38-42 In
comparison, the simpler RRK22 or Engelking13 theories signifi-
cantly underestimate or overestimate both the kinetic energy
released and the rate constant, the latter by several orders of
magnitude.

More recently, we investigated the performances of PST in
a broader range of situations.43-46 Rotating systems and the
rotational cooling and heating effects47 were studied on model
rare-gas clusters.43 Molecular,44 heterogeneous,45 and asym-
metrical46 clusters were also considered. In all these situations,
PST was again seen to give a very good agreement with respect
to molecular dynamics trajectories, that can be considered
numerically exact, provided that enough events have been
gathered. It thus seems that the maturity reached by PST allows
its predictions to be used quite safely as a benchmark with
respect to more approximative treatments. In the present work,
we focus on the distribution of translational kinetic energy
released upon dissociation of Arn and Arn+ clusters. Our
motivation is to establish connections between these distributions
and the thermodynamical state of the product cluster. By relying
on Monte Carlo and molecular dynamics sampling, the ther-
modynamical properties can be fully calculated and compared
to the estimates from the dissociation patterns.

The choice of neutral argon clusters comes from the require-
ment for simple atomistic models and heavy sampling. The
Lennard-Jones (LJ) potential allows us to investigate relatively
large clusters such as Ar56 for various total energies. The cationic
cluster Ar14

+ is more realistic but also more demanding from
the computational point of view. A diatomic-in-molecules (DIM)
quantum Hamiltonian built from state-of-the-art spectroscopic
data48 provides an appropriate model for statistical and dynami-
cal purposes.

The paper is organized as follows. The main elements of
statistical theory are summarized in the next section. We pay
particular attention to the approximations introduced in the
derivation of the Arrhenius expression for the KER distribution,
f(ε) ∝ εR exp(-ε/kBT). Our results are presented and discussed
in section III, and possible improvements for using this basic
form in interpreting experiments are proposed. We finally
summarize and conclude in section IV.

II. Theory

We consider the general unimolecular dissociation of an
atomic cluster, Xn+1 f Xn + X. The total energyE of the parent
cluster Xn+1 is partitioned upon dissociation into the following
terms:

whereE0 is the dissociation energy (or difference in binding
energy between the parent and product clusters),εt andεr are
the translational and rotational relative kinetic energies of the
product, andεv is its remaining internal (vibrational) energy.
In the case of dissociation into compounds, both larger than a
single atom, the rotational and vibrational energies would be
shared by the two products. Similarly, the total angular
momentumJ is partitioned into the orbital momentumL and

the individual momenta after dissociationJ1 and J2 as the
vectorial sumJ ) J1 + J2 + L ) Jr + L.

In the present work, we assume that the clusters have no initial
angular momentum. Within the PST formalism, the unnormal-
ized probability f(εt) that a dissociation event occurs with
translational kinetic energy releasedεt is given by integration
over all possible values of the rotational energyεr as28

Here, we have denotedω(E) the vibrational density of states
(VDOS) of the product cluster at energyE and Γ(εr, εt) the
rotational density of states (RDOS) of the two products.A(εt)
is the maximum value of the rotational energy available because
of angular momentum constraints. In PST/OTS, the transition
state is located at the products, and a centrifugal barrierε†(L)
has to be overcome. Because the orbital momentum exactly
compensates the internal momentum, this defines a maximum
value forJr denoted asJr

max such thatε†(Jr
max) ) εt. In turn,Jr

max

is related toA(εt). The product clusters investigated in the present
work will be essentially considered as spherical tops. By
denotingB their rotational constant, the RDOS is expressed as20

Γ ) εr/B ) Jr
2, andA(εt) is given byB(Jr

max)2.
At this stage, the kinetic energy distributions do not carry

any explicit information about the temperature of the product.
Clearly, the thermodynamical information is contained into the
vibrational DOSω; hence, some approximations are needed.
Below, these approximations will be referred to as (A1)-(A4)
for clarity.

(A1) In general,εtr ) εt + εr is much smaller than the
available energyE - E0.52 This will be especially true for large
systems, for whichE scales linearly with the number of atoms
n, but εtr remains limited. We can thus perform a Taylor
expansion ofω up to second order inεtr, and we find

with kB being the Boltzmann constant. In writing eq 3, we have
introduced the microcanonical temperatureTµ defined as

and the microcanonical heat capacityC ) ∂E/∂Tµ.
(A2) We further assume that the heat capacityC is much

larger thankB. Again, this approximation will be mostly valid
for larger clusters.53 In doing so, the Taylor expansion of the
VDOS is assimilated to that of an exponential form, hence

Inserting this expression into the integral of eq 2, one finds

The latter form cannot be fully exploited to extractTµ from f,
becauseA(εt) is not known yet.

(A3) The dissociation potential felt by the fragments Xn and
X can be generally approximated asV(r) ) -Cp/rp, with p )
4 (ion/neutral) orp ) 6 (neutral/neutral). The centrifugal barrier
is then given by the well-known Langevin theory54

E ) E0 + εt + εr + εv ) E0 + εtr + εv (1)

f(εt) ∝ ∫0

A(εt) ∂Γ
∂εr

ω(E - E0 - εt - εr) dεr (2)

ω(E - E0 - εt - εr) )

ω(E - E0)[1 -
εtr

kBTµ
+ (1 -

kB

C) εtr
2

2kB
2Tµ

2
+ O(εtr

3)] (3)

1
kBTµ

) ∂ ln ω
∂E

(4)

ω(E - E0 - εt - εr) ≈ ω(E - E0) exp(-εtr/kBTµ) (5)

f(εt) ∝ [1 - exp(-A(εt)/kBTµ)] exp(-εt/kBTµ) (6)
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with Λp a constant given byΛp ) pµBCp
2/p[2/(p - 2)](p-2)/p

andµ being the reduced mass.
It is instructive to look at the size dependence ofΛp. For a

neutral/neutral dissociation,C6 ∝ n andB ∝ n-5/3, thereforeΛ6

is proportional ton-4/3. For an ion/neutral reaction,C4 remains
constant withn andΛ4 ∝ n-5/3. In both cases,A(εt) decreases
with n at least as rapidly as 1/n.

(A4) Under the large size assumption ofn . 1, and
considering the aforementioned conditions, the first term in
the right-hand side of eq 6 can be approximated as 1-
exp[-âA(εt)] ≈ âA(εt), leading to the simple form for the KER

This is the conventional expression used to extract a temperature
from experimental kinetic energy distributions. From our
derivation, similar to that of Klots,26 it is clear that the choice
of anεR exp(-ε/kBT) form relies on a series of approximations
that can be summarized as follows.

(i) The large size approximations (A1) and (A2): the
vibrational density of states is Taylor expanded up to second
order, leading to the Arrhenius form including the micro-
canonical temperature; the heat capacity is assumed to be very
large with respect tokB.

(ii) The dissociation potential is radial with the form-Cp/rp:
this leads to the expressionA(ε) ∝ ε(p-2)/p for the centrifugal
barrier energy (approximation (A3)).

(iii) The angular momentum constraints (A4): the maximum
rotational energyA(ε) available after crossing the centrifu-
gal barrier is explicitly included, but assumed to be small
(1 - e-âA = âA).

In the literature, KER distributions have often been adjusted
to an ε × exp(-ε/kBT) form, even for clusters.8 As noted
previously,26 this expression would only be valid for hard core
systems (p f ∞, cf., eq 8) or for macroscopic objects for which
the constraints on angular momentum are released. While both
R and T can be fitted independently from the distribution,
an estimate of the temperature is obtained from the first mo-
mentsM1 ) 〈εt〉 andM2 only, without any assumption on the
powerR

with 〈 〉 denoting an average over the distributionf. The second
moment is related to the heat capacity of the system through
the energy fluctuations in the numerator of eq 9. However, while
the heat capacity was assumed to be large,M2 remains limited,
because the denominator〈εt〉 scales similarly (that is linearly)
with the cluster size.

III. Results and Discussion

A. Neutral Argon Clusters. We start by looking at neutral
Arn clusters. Such clusters will be used as model systems, for
which the simplicity of the potential energy surface (PES) allows
statistical theories to be accurately tested against molecular
dynamics simulations. Two sizes have been considered, namely,
n ) 14 andn ) 56, because of the highly spherical character
of the main products.

1. Technical Details.The potential energy of neutral argon
clusters has been taken as a sum of pairwise Lennard-Jones
interactions withσ ) 3.405 Å andε ) 120 K. To test the

accuracy of the PST formalism, MD simulations of evaporative
trajectories have been carried out. For each excess energy, 5000
trajectories were propagated using a fifth-order Adams-Moulton
predictor-corrector algorithm with a time step of 2 fs. Initial
conditions were chosen at zero total angular momentum.

As seen in the previous section, one of the ingredients of a
PST calculation is the vibrational density of states of the
products. We have computed the vibrational densities of Ar13

and Ar55 from parallel tempering Monte Carlo simulations, using
50 replicas in the temperature range 1 Ke T e 50 K, with 106

MC cycles per replica following 2‚105 MC cycles for equilibra-
tion. Exchange moves were attempted after each cycle with 10%
probability. The configurational densities were constructed from
the potential energy distributions through a multiple histogram
reweighting analysis.49 The vibrational densities were subse-
quently obtained by convolution with the analytical kinetic
DOS.50

A second important point in PST/OTS concerns the rotational
densities of states. The potential felt by the dissociating atom
is required for the calculation of the location and height of the
centrifugal barrier. We have calculated this potential from a
Monte Carlo simulation constrained at a series of fixed distance
r between the atom and the center of mass of the product. The
effective potential was fitted to a-C6/(r - r0)6 form, with
optimal parametersC6 ) 0.6447 eV Å6 for Ar13 and C6 )
0.3061 eV Å6 for Ar55, with radii r0 ) 1.7 Å for Ar13 andr0 )
5.89 Å for Ar55. Angular momenta and rotational energies are
then related to each other from the rotational constant of the
product, also obtained from the MC calculations. AtT ) 36 K,
we find B ) 3.32‚10-3 cm-1 for Ar13 andB ) 3.1‚10-4 cm-1

for Ar55. Because the potential does not have the simple 1/rp

form, one cannot calculate the centrifugal barrier exactly, and
a numerical resolution is carried out.

2. Validation of PST.The predictions of PST/OTS are first
tested against extensive MD simulations. A comparison between
MD and PST/OTS for the average KER〈εt〉 is shown in Figure
1 for the two sizes. Standard deviations estimated from 10
independent sets of 5000 simulations are roughly the size of
the symbols.

The very good agreement observed on this figure confirms
the previous studies, which emphasized the ability of phase
space theory to reproduce other observables such as the total
kinetic energy releaseεtr or the rotational angular momentum
Jr of the product cluster.38-46 In the two systems, the variations
of 〈εt〉 versus excitation energy show a small change in

A(εt) ) Λpεt
(p-2)/p (7)

f(εt) ∝ εt
(p-2)/p exp(-εt/kBTµ) (8)

kBTµ )
〈εt

2〉 - 〈εt〉
2

〈εt〉
) M2 (9)

Figure 1. Average translational kinetic energy released upon dissocia-
tion of Arn+1 clusters, as a function of energy above the dissociation
threshold. (a) Ar14; (b) Ar56. The MD results are shown as symbols,
and the PST/OTS predictions are given by the solid lines.
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curvature, which signals the occurrence of the solidlike-
liquidlike phase change, associated with dynamical coexistence
in the microcanonical ensemble.51 This feature is especially
prominent in the dissociation of the larger cluster Ar56, for which
a backbending and a decrease of〈εt〉 take place close to 0.68
eV excess energy. Unfortunately, the large size of the system
hampers the direct MD simulation of evaporation in this energy
range, and we have not been able to check the PST results
against MD. But this signature of a phase change is clearly seen
in the numerical simulation data for Ar14, confirming that
fragmentation statistics carry important information about phase
transitions.

In Figure 2, the KER distributions for the dissociation of Ar56,
obtained from the PST calculation, are shown in a broad range
of excess energy as a two-dimensional plot. For convenience,
the KERD are normalized at their maximum. This graph
provides another view at the manifestations of the phase change
on the kinetic energy distributions. Both the position of the
maximum and the width exhibit non-monotonic changes across
the solid-liquid transition. The isolevel contour lines at the base
of the plot reproduce quite well the backbending of the
microcanonical temperature and the average KER. These results
clearly indicate that the changes in the distribution of energy
released could be interpreted directly in terms of the phase
change in the product cluster.

3. Calorimetric Measurements.From the different approxi-
mations described in the theoretical section, the microcanonical
temperature of the product cluster may characterize the KER
distribution obtained at a given excess energy, through the
mathematical formεt

R × exp(-εt/kBT). At this stage, one can
adjust the available distribution as an Arrhenius law either by
fitting R andT simultaneously, by fittingT only and assuming
a specific value forR, or from the first two moments of the
distribution (see eq 9). In the present case, the distributions have
been adjusted to reproduce the PST distributions withR ) 2/3
or R ) 1. While the former value is the natural choice for
neutral/neutral products interacting through 1/r6 dispersion
forces, the latter value was also considered, since it has been
often used to interpret experimental data.8 A justification for
this value can be found in the Weisskopf formalism and
neglecting the variations of the collision cross-section with
respect toεt.

In Figure 3, typical MD and PST results for the KERD are
shown along with the best fits obtained for the two values of
the powerR and for the two parent clusters Ar14 and Ar56.
Beyond the good agreement between MD and PST, the two
fits with differentR values show contrasting qualities. Contrary
to the best distribution fitted withR ) 1, the distribution for
R ) 2/3 matches well the PST data.

The adjustment of the KER distribution to Arrhenius forms
was repeated for a series of excess energies and for the two
neutral clusters. We have represented in Figure 4 the micro-
canonical temperature obtained from these best fits with the
two powersR, as well as the temperatures given by the first
moments of the distribution. These temperatures are compared
with the thermodynamical value computed from the vibrational
densities of states, by solving eq 4. The quality of the
adjustment, as measured by the standard mean-square errorø2,
is also given in the lower panels of Figure 4. In accordance
with our previous observation, the Arrhenius forms are much
more appropriate forR ) 2/3 than forR ) 1. In all cases, fitting
the KERD to the Arrhenius expression withR ) 1 or estimating
the temperature from the moments of the distribution leads to
a significant underestimation of the temperature. The error in
the determination of temperature is especially large for the
smaller system, from about 15% with the moments calculation
and reaching about 40% when fitting withR ) 1. For Ar56, the
agreement between the Arrhenius form withR ) 2/3 and the

Figure 2. Kinetic energy release distribution upon dissociation of Ar56

obtained from PST/OTS, as a function of the excess energy. For each
excess energy, the distribution is normalized at its maximum. The
isolevel contour lines are also shown.

Figure 3. Examples of KER distributions for the dissociation of neutral
Arn+1 clusters withn ) 13 (left panel) andn ) 55 (right panel). The
symbols refer to the MD results, the solid lines refer to the PST/OTS
calculation, and the dashed lines represent the best fits to Arrhenius
forms with powers 1 and2/3.

Figure 4. Temperature of the product cluster Arn vs excitation energy
for n ) 13 (left panel) andn ) 55 (right panel). The reference value
obtained from Monte Carlo simulations is given as solid lines, and
several temperatures extracted from adjustment of the KER distributions
are represented. The lower panels show the statistical errorø2

corresponding to the best fit of the KER distribution to the Arrhenius
form.
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thermodynamical value is remarkably good, wiht the relative
error always below 4% in the energy range considered here.

From the previous results, size effects are seen to be primarily
responsible for the discrepancies between the PST distributions
and their adjustment to an Arrhenius law, even when the correct
powerR is used (for the present neutral clusters,R ) 2/3). The
extraction of the temperature from the moments of the distribu-
tion is also not free of errors: while this method provides the
best comparison for the small cluster, it is not as reliable as the
plain Arrhenius fits for the larger system.

B. Charged Argon Clusters. We now turn to cationic
clusters, which are experimentally more interesting, as they
allow precise measurements through size selection. The group
of Stace, in particular, have interpreted its experimental data
on argon clusters using phase space theory.55,56

1. Technical Details.The charge on argon clusters is partially
delocalized over a few atoms, and cationic clusters can be
roughly seen as a charged ionic core solvated by atoms bound
by dispersion and polarization forces.57 Clearly, explicit pair
potentials cannot give a good account for this partly covalent
bonding. Fortunately, simple but highly accurate quantum
Hamiltonians are available to describe the ground state (and
the low-lying excited states) of charged rare-gas clusters. The
diatomic-in-molecules (DIM) approximation58 provides struc-
tural and dynamical properties in very good agreement with
experiments. A complete presentation of the DIM Hamiltonian
lies beyond the scope of the present paper, and we refer the
reader to ref 57 for further information. The key ingredients of
the DIM model are the potential energy curves for the ground
states of Ar2 and Ar2+, as well as the excited states curves for
the charged dimer. We made some changes to the original
Hamiltonian of ref 57 by including the more recent data by
Wüest and Merkt48 who fitted high-resolution photoelectron
spectroscopy measurements to obtain curves corresponding to
the first six electronic states of Ar2

+.
Molecular dynamics simulations of the evaporation process

Arn+1
+ f Arn

+ + Ar have been performed forn ) 13 on the
ground-state electronic surface, using a fourth-order Runge-
Kutta propagator with time step of 0.4 fs. Again, the sizen )
13 was chosen because of the roughly spherical shape of the
main product. Because of the relatively heavy computational
cost of the DIM model, we had to choose a high excitation
energy corresponding to 100 K. Twenty thousand trajectories
were generated from a low-energy (10 K) run, with each
trajectory being stopped after an evaporation event taking place
within 20 ps.

The PST/OTS analysis was carried out using the average
rotational constant of the Ar13

+ product at 30 K, namely,B )
3.02‚10-3 cm-1. The vibrational density of states was computed
from parallel tempering Monte Carlo simulations in the canoni-
cal ensemble, using 50 replicas in the temperature range 1 Ke
T e 150 K. The MC simulations consisted of 5‚105 cycles
following 2‚105 cycles for each replica, with one exchange move
attempted with 10% probability per cycle. For the radial
potential, we also performed Monte Carlo simulations at fixed
distance between the dissociating atom and the center of mass
of the product. The results obtained at 10 K are represented in
Figure 5 and compared to the exact long-range behavior
-C4/r4 with C4 ) 11.816 eV Å4 (ref 48), as well as to the better
fit -C4/(r - r0)4 with r0 ) 2.34 Å.

The deviations of the simulation data to the 1/r4 law are
significant, especially at moderate distances. As in neutral
systems, these deviations originate from the finite extent of the
cluster, but also here from the partially covalent bonding at small

distances. This is illustrated in the inset of Figure 5, where the
average partial charge carried by the dissociating atom is plotted
against its distance. The residual charge transfer at low distances
exceeds 0.1, which is significant in this system where the
interactions are otherwise of the dispersion type. Such a behavior
is probably less likely to occur in larger charged clusters,
because the charge delocalization remains limited in space to a
core of 3-4 atoms.57 The significant charge transfer makes the
-C4/(r - r0)4 expression poorly relevant at moderate distances,
which might become a problem when the centrifugal barrier is
located at short distances, as it would be for initially rotating
clusters. The present simulations have been performed at zero
initial angular momentum; we have thus kept the simple
-C4/(r - r0)4 form for the dissociation potential.

2. Validation of PST.The distributions of kinetic energy
released upon evaporation of a neutral atom from Ar14

+ at an
excitation energy of 100 K are represented in Figure 6. We
compare in this figure the results of microcanonical MD
simulations to the PST/OTS calculation. The overall agreement

Figure 5. Radial potential felt by a neutral atom dissociating from
Ar13

+, as a function of its distancer to the cluster center of mass. The
symbols are the results of Monte Carlo calculations at 10 K using the
DIM Hamiltonian and constrained at fixedr. The dashed line is the
-C4/r4 long-range potential; the solid line refers to the modified
-C4/(r - r0)4 potential actually used in the PST/OTS calculation. The
inset shows the average charge carried by the dissociating atom vsr.

Figure 6. KER distribution for the dissociation of Ar13
+ at excess

energyE - E0 ) 0.2367 eV, obtained from MD simulations (symbols)
or from the PST/OTS predictions (solid line). The best fits of the
distribution to Arrhenius forms with powers 1 and1/2 are also shown
as dashed lines. Inset: average translational kinetic energy released vs
excess energy above dissociation threshold, from PST/OTS (solid line)
and MD simulations (symbol). The arrow shows the location of the
solidlike-liquidlike transition.

Kinetic Energy Release in Cluster Dissociation J. Phys. Chem. A, Vol. 110, No. 4, 20061565



is very satisfactory, confirming in this new but important case
that phase space theory is accurate as long as statistical
observables are concerned. The agreement also shows that the
-C4/(r - r0)4 dissociation potential is appropriate, confirming
that the centrifugal barriers are low and located at long distances.
The results shown here and below for Ar14

+ remain essentially
unchanged if the simpler-C4/r4 dissociation potential is used.

The variations of the average KER with excitation energy,
represented in the inset of Figure 6, reveal a small backbending
at 0.08 eV extra energy above the dissociation threshold, in
agreement with the thermodynamical caloric curve computed
from independent microcanonical Monte Carlo calculations (see
below).

In Figure 6, we have superimposed the best fits of the KERD
asf(ε) ∝ εR exp(-ε/kBT) with R ) 1 andR ) 1/2. While the fit
obtained forR ) 1/2 cannot be distinguished from the PST curve,
a significant deviation is observed when assuming the larger
value forR. The nice fit obtained forR ) 1/2 is obviously not
surprising, since this value should be appropriate for an ion/
neutral reaction. Finally, we notice that the typical average KER
and the KER distribution found here agree well with the
experimental data reported by Woodward and Stace.56

3. Calorimetric Measurements.The microcanonical temper-
atureTµ of the product cluster Ar13

+ was obtained from the
vibrational density of states using the same standard techniques.
Its variations with excess energy are represented in Figure 7,
along with temperatures extracted from the KER distributions.
As in the case of neutral clusters, we calculateTµ by assuming
an Arrhenius formεR exp(-ε/kBTµ) for the KERD or from the
moments only. The temperature shows a convex part near the
excess energy of 0.08 eV, which is indicative of the solidlike-
liquidlike phase change similar to that found in neutral clusters.

The poor fit obtained for the powerR ) 1 is reflected in the
large deviations between the fitted temperature and the ther-
modynamical value. The relative error for this estimate exceeds
40% in the entire energy range, which is again similar to the
results on the neutral cluster. In contrast, the temperatures
extracted from the moments of the distribution or from a fit
with power of 1/2 lead to a much better agreement. However,
even with these more correct approaches, the deviations remain
quite large, about 20% on average. It thus seems that, while
PST is quite good in reproducing the “exact” MD results, the
approximations used in establishing the exponential form from

the KERD distributions are not fully valid in general. As in the
case of neutral clusters, some corrections are needed to improve
the assumed expression of the KERD, in order to extract
temperatures that are closer to the actual thermodynamical value.

C. Possible Improvements.As was mentioned in section
II, the large size approximation is crucial to establish the
Arrhenius form of the KER distribution in two respects, namely,
the Taylor expansion of the VDOS itself and the neglect of the
(second-order) heat capacity term. As a matter of fact, the
comparison between the temperatures extracted from the KERD
and the thermodynamical value is much more favorable for the
larger cluster Ar56 than for Ar14. We wish to discuss here some
alternative forms for the KER distributions that could improve
the quality of the measurements, especially for small systems.

Starting from the most general PST/OTS expression of eq 2
in which we take∂Γ/∂εr ) constant, another form for the KER
distribution, better than eq 5 and valid up to second order in
εtr, can be found by writing

Inserting this expression into eq 2 leads to

While this expression is general and free of most approxima-
tions, it is not quite tractable in practice.

(A2′) To make the above expression useful, we assume that
A , kBTµ for all values ofεt. We get

If we keep the explicit formA(εt) ) Λεt
R, the last equation and

eq 6 can be considered better possible forms for the KER
distribution. The approximations they refer to, respectively, (A2)
and (A2′), are different. (A2) involves a thermodynamical
approximation that the heat capacity is much larger thankB.
On the other hand, (A2′) is related to the mechanical constraints
associated with the conservation of the zero angular momentum,
namely, that the rotational energy of the product is sufficiently
small. As we have shown in section II, both approximations
rely on the assumption that the number of degrees of freedom
is large (C ∼ 3nkB . kB and A ∼ n-4/3 or A ∼ n-5/3, hence
A , kBTµ).

We have repeated the extraction of the product temperature
from the KERD, but imposing now the forms of eq 6 or eq 12
instead of the basic Arrhenius expressions. The results for Ar14

and Ar14
+ are represented in Figure 8. Any of the two new forms

appears to be better than the Arrhenius behavior, but it looks
obvious that the most critical approximation is (A2) concerning
the range of available rotational energies. In general, the relative
error in the estimated temperature decreases by a factor of at
least 2 when giving up approximation (A2), while it decreases

Figure 7. Temperature of the product cluster Ar13
+ versus excitation

energy, from Monte Carlo simulations (solid line) and from the best
fits of the KER distributions assuming a simple Arrhenius form (dotted
and dashed lines).

ω(E - E0 - εt - εr) =

ω(E - E0)(1 -
kB

C

εtr
2

2kB
2Tµ

2) exp(-εtr/kBTµ) (10)

f(εt) ) ω(E - E0)kBTµ exp(-
εt

kBTµ){1 - e-A/kBTµ -

kB

2C[( εt

kBTµ
)2

-
εt

2 + A2

kB
2Tµ

2
e-A/kBTµ +

2(1 +
εt

kBTµ
)(1 - e-A/kBTµ - A

kBTµ
e-A/kBTµ)]} (11)

f(εt) ≈ A(εt) e-εt/kBTµ[1 -
kB

2C( εt

kBTµ
)2] (12)
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by a few percentage points only when accounting for the finite
heat capacity in (A2′).

The observation that both approximations contribute to an
improvement in the estimated temperatures suggests an empirical
form for the KERD that accounts simultaneously for the heat
capacity correction as well as the possibly large maximum
rotational energy. This new expression combines the two
approximations (A2) and (A2′) in the following way:

We have verified that this expression indeed improves the
agreement between the thermodynamical temperature and the
value fitted from the KERD. Since both the interaction constant
Λp and the heat capacityC can be easily estimated, we expect
the form of eq 13 to be particularly useful in the experimental
determination of temperatures from the translational energy
released.

IV. Conclusion

Kinetic energy released distributions from dissociating clusters
potentially contain a lot of information about the thermodynami-
cal state of the products. Following previous authors, particularly
Klots23-26 and Chesnavich and Bowers,28 and building upon
cluster specific studies,38-42 we have extended our work on
statistical theories of dissociation43-46 by focusing on the KERD
observable. The distribution of KER is particularly relevant in
experiments, because it does not incorporate as many free
parameters as, e.g., the reaction rates. Our present motivation
was to question whether the thermodynamical properties
(internal temperature) could be actually extracted from the
KERD. This question was addressed from the point of view of
phase space theory in its orbiting state formalism. By performing
large scale molecular dynamics simulations on neutral and
charged argon clusters, we were able to confirm the general
validity of PST/OTS for the reproduction and prediction of KER
distributions. The statistical theory was used in turn to provide
benchmark data, to assess the reliability of the Arrhenius form
f(ε) ∝ εR exp(-ε/kBT) assumed for the KERD. In this purpose,

approximations leading from the rigorous PST treatment to the
Arrhenius form were progressively introduced. Our numerical
simulations allowed us to critically discuss the validity of these
approximations.

In general, we found that size effects play an important role,
with the Arrhenius expression being more relevant for large
systems for which the hypothesis that the KER is much smaller
than the excess energy holds. The maximum rotational energy
also decreases with increasing sizes, even though its variations
depend on the nature of the interaction between the products.
For clusters containing several tens of atoms, the Arrhenius form
was seen to be generally correct, provided that the appropriate
powerR was included in the fitting expression. In this respect,
the temperature obtained from the second moment of the KER
distribution is seen to be much better than the value given when
assuming the (incorrect) hard core valueR ) 1. However, for
the 14-particle neutral and charged argon clusters, significant
deviations ranging up to more than 40% between the thermo-
dynamical temperature and the value fitted from the KERD were
observed when using a simple Arrhenius form. These deviations
are related to the breakdown of some specific approximations.
At least two improvements have been proposed that should allow
much better estimates of the cluster temperature from the KERD.
We expect these improvements to be of straightforward use in
most experiments, and we plan to apply the present suggestions
to the case of thermionic electron emission.35,36

The present work was limited to spherical clusters at fixed
total energy and zero angular momentum. Nonspherical clusters
or the dissociation of molecules could be treated as well, even
though the expressions for the rotational densities of states often
become cumbersome.28 Most of the present results could be also
extended to a finite angular momentum. However, for rotating
clusters, the centrifugal barrier could be significantly higher and
located more closely to small distances. This would require a
better knowledge of the dissociation potential, especially in the
case of charged clusters where the-C/r4 polarization interaction
may not be fully appropriate, even when it is modified into
-C4/(r - r0)4 to account for the finite extent of the cluster.

The practical situation of thermalized clusters would need
further work, as the thermal energy distributions of the parent
cluster would have to be accounted for. The description of
clusters prepared cold and excited through a collision or by
photoabsorption also calls for a more complete modeling. In
the case of a laser excitation, or if the collision is highly
energetic, the influence of the excited states during at least the
first stages of the dynamics could be a determining factor.
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(14) Bréchignac, C.; Cahuzac, Ph.; Leygnier, J.; Weiner, J.J. Chem.

Phys.1989, 90, 1492.
(15) Atrill, S.; Stace, A. J.J. Chem. Phys.1998, 108, 1924.
(16) Choi, H.; Bise, R. T.; Hoops, A. A.; Mordaunt, D. H.; Neumark,

D. M. J. Phys. Chem. A2000, 104, 2025.
(17) Borggreen, J.; Hansen, K.; Chandezon, F.; Døssing, T.; Elhajal,

M.; Echt, O.Phys. ReV. A 2000, 62, 013202.
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